In 2011, researchers observed a massive bloom of phytoplankton growing under Arctic sea ice – conditions that should have been far too dark for anything requiring photosynthesis to survive.
Using mathematical modeling, researchers from the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) found that thinning Arctic sea ice may be responsible for these blooms and that the conditions that cause phytoplankton blooms have become more common. This has the potential to cause significant disruption in the Arctic food chain.
The research, published in Science Advances, involved CPOM scientists David Schroeder, Daniela Flocco and Danny Feltham from the University of Reading.
Phytoplankton shouldn’t be able to grow under the ice because ice reflects most sunlight light back into space, blocking it from reaching the water below.
But over the past decades, Arctic ice has gotten darker and thinner due to warming temperatures, allowing more and more sunlight to penetrate to the water beneath. Large, dark pools of water on the surface of the ice, known as melt ponds, have increased, lowering the reflectivity of the ice. The ice that remains frozen is thin and getting thinner.
The big question was how much sunlight gets transmitted through the sea ice, both as a function of thickness, which has been decreasing, and the melt pond percentage, which has been increasing.
Chris Horvat, first author of the paper and graduate student in applied mathematics at SEAS explained: “What we found was that we went from a state where there wasn’t any potential for plankton blooms to massive regions of the Arctic being susceptible to these types of growth.”
The team’s mathematical modeling found that while the melt ponds contribute to conditions friendly to blooms, the biggest culprit is ice thickness.
Twenty years ago, only about 3 to 4% of Arctic sea ice was thin enough to allow large colonies of plankton to bloom underneath. Today, the researchers found that nearly 30% of the ice-covered Arctic Ocean permits sub-ice blooms in summer months.
Horvat added: “All of a sudden, our entire idea about how this ecosystem works is different. The foundation of the Arctic food web is now growing at a different time and in places that are less accessible to animals that need oxygen.”
Dr Schroeder summarised: “This study demonstrates that improving the sea ice model leads to a step forward in our understanding of how the Arctic is responding to climate change.”
The researchers hope their model will be helpful for planning future expeditions to observe these blooms and measuring the impact this shift will have on ecosystems.
Read the full paper: Horvat et al. (2017) The frequency and extent of sub-ice phytoplankton blooms in the Arctic Ocean, Science Advances, 3, 3, 2375-2548.
Further information can be found on the Harvard and Reading University websites, as well as via extensive media coverage: click on the Altmetric donut below to read more.